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Abstract— Monaural source separation is the challenging task of 

separating signals from different sources when only one mixed 

channel information is available. Even though people can 

intuitively distinguish a conversational thread amid a cacophony of 

babble in a crowded room, it’s not a trivial task algorithmically. In 

this project, the capability of deep recurrent neural networks 

(RNN) for singing voice separation from monaural recordings in a 

supervised manner is studied. Different architectures for Deep 

recurrent neural networks and different objectives are explored. 

I. INTRODUCTION 

In natural conversation a speech signal is typically perceived 
against a background of other sounds (background noise, music, 
other speech). The human auditory system processes the acoustic 
mixture reaching the ears to enable constituent sounds to be heard 
and recognized as distinct entities, even if these sounds overlap 
in both spectral and temporal regions with the target speech. The 
flexibility and robustness of human speech perception is 
demonstrated by the range of situations in which spoken 
communication is possible in the presence of competing sound 
sources [1]. Researchers in signal processing and many other 
related fields have strived for the realization of this human ability 
in machines; however, it is still a topic of research. 

Monaural source separation is important for several real 
world applications. For example, the accuracy of automatic 
speech recognition (ASR) can be improved by separating noise 
from speech signals [2]. The accuracy of chord recognition and 
pitch estimation can be improved by separating singing voice 
from music [3]. It can be used to recognize speech from different 
voices in a single audio clip, known as the cocktail party problem. 
However, current state-of-the-art results are still far behind 
human capability. In this project, I focused on singing voice 
separation from monaural recordings as a test case for monaural 
source separation. 

The organization of this paper is as follows: Section 2 
discusses the relation to previous work. Section 3 introduces the 
proposed methods, including the deep recurrent neural networks, 
joint optimization of deep learning models and a soft time-
frequency masking function, and different training objectives. 
Section 4 presents the experimental setting and results using the 
MIR-1K dataset [12]. The paper is concluded in Section 5.  
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II. LITERATURE REVIEW 

Various sophisticated methods have been proposed over the 
past few decades in research areas such as computational 
auditory scene analysis (CASA) [4] and independent component 
analysis (ICA) [5–7]. CASA separation techniques are mostly 
based on splitting mixtures observed as a single stream into 
different auditory streams by building an active scene analysis 
system for acoustic events that occur simultaneously in the same 
spectro-temporal regions. The acoustic events are distinguished 
according to rules inspired intuitively or empirically from the 
known characteristics of the sources.  

Nonnegative matrix factor deconvolution (NMF) [8, 9] can 
extract an inherent spectro-temporal structure of a sound source. 
As a result of NMF, a dictionary of monotonic trajectories is 
learned from a course of sound source power spectral densities, 
and by classifying the dictionary items into a desired number of 
elements, the original source signals can be recovered. Although 
NMF is successfully applied to several monaural source 
separation problems such as polyphonic music transcription, it is 
hard to obtain a reliable dictionary for a complex sources such as 
speech signals 

The recent success of deep neural networks for classification 
problems has naturally inspired their use in class-based 
segmentation problems and therefore highly specialized 
algorithms such as CASA requiring advanced knowledge of 
audio signal processing have seen a decrease in use. 

One of the major problem for deep learning algorithms is that 
many of the neural networks developed assume the number of 
speakers present in the mixture, which is necessary considering 
the number of output nodes in a neural network is fixed and may 
not match the total number of speakers in the audio. Even though 
spectral clustering techniques [10] can accommodate unknown 
number of speakers, they are limited in performance as they are 
dependent on specially designed features and don’t utilize the 
capabilities of deep learning. One proposed way to solve this 
problem is using long short-term memory (LSTM) layers in a 
deep clustering approach [11] to learn feature transformations 
known as embeddings, which can then be used for clustering. 
This approach can represent the various speakers implicitly using 
the fixed-dimensional output of the network. 
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Project explores different deep recurrent neural network 
architectures along with the joint optimization of the network 
with a soft masking function. 

 

III. PROBLEM DESCRIPTION 

In order to formulate the problem, assume that the observed 
signal yt is the summation of N independent source signals 

 𝑦𝑡  =  𝜆1 𝑥1
𝑡  +  𝜆2𝑥2

𝑡  + . . . + 𝜆𝑁𝑥𝑁
𝑡  ,                    (1)  

where 𝑥𝑖
𝑡 is the t-th observation of the i-th source, and λi is the 

gain of each source, which is fixed over time. Note that 
superscripts indicate sample indices of time-varying signals and 
subscripts identify sources. The gain constants are affected by 
several factors, such as powers, locations, directions and many 
other characteristics of the source generators as well as 
sensitivities of the sensors.  

The goal is to recover all 𝑥𝑖
𝑡 given only a single sensor input 

yt. The problem is too ill-conditioned to be mathematically 
tractable since the number of unknowns is NT given only T 
observations 

A.  Dataset 

The proposed architecture is evaluated using the MIR-1K 
dataset [12]. A thousand song clips are encoded with a sample 
rate of 16 KHz, with durations from 4 to 13 seconds. The clips 
were extracted from 110 Chinese karaoke songs performed by 
both male and female amateurs. There are manual annotations of 
the pitch contours, lyrics, indices and types for unvoiced frames, 
and the indices of the vocal and non-vocal frames. Only the 
singing voice and background music are used in this set-up. 

Data is generated in 4 second chunks and training data is 
augmented by combining vocals of a song with music from 
another. The network is trained using clips from 50 singers, 
validated on 20 singers and tested on remaining 40 singers’ clips 

 B. Evaluation 

Following the evaluation framework in [12], three sets of 
mixtures were created using the 1000 clips of the MIR-1K 
dataset. For each clip, the singing voice and the music 
accompaniment were mixed at -5, 0, and 5 dB SNRs, 
respectively. Zero indicates that the singing voice and the music 
are at the same energy levels, negative values indicate the energy 
of the music accompaniment is larger than the singing voice, and 
so on. 

For source separation evaluation, in addition to evaluating the 
Global Normalized Source to Distortion Ratio (GNSDR) as [12], 
performance is also evaluated in terms of Source to Interference 
Ratio (SIR), Source to Artifacts Ratio (SAR), and Source to 
Distortion Ratio (SDR) by BSS-EVAL metrics [13]. The 
Normalized SDR (NSDR) is defined as 

𝑁𝑆𝐷𝑅(�̂�, 𝑣, 𝑥) =  𝑆𝐷𝑅(�̂�, 𝑣) −  𝑆𝐷𝑅(𝑥, 𝑣), (2) 

where �̂� is the resynthesized singing voice, v is the original 
clean singing voice, and x is the mixture. NSDR is for estimating 

the improvement of the SDR between the preprocessed mixture 
x and the separated singing voice �̂�. The GNSDR is calculated 
by taking the mean of the NSDRs over all mixtures of each set, 
weighted by their length. 

𝐺𝑁𝑆𝐷𝑅(ˆ𝑣, 𝑣, 𝑥) =
∑ 𝑤𝑛𝑁𝑆𝐷𝑅(�̂�𝑛, 𝑣𝑛, 𝑥𝑛)𝑁

𝑛=1

∑ 𝑤𝑛
𝑁
𝑛=1

, (3) 

where n is the index of a song and N is the total number of 
the songs, and wn is the length of the nth song. Higher values of 
SDR, SAR, SIR, and GNSDR represent better separation quality. 

 

IV. PROPOSED METHOD 

A.   Recurrent Neural Network 

To capture the contextual information among audio signals, 
one way is to concatenate neighboring features together as input 
features to the deep neural network. However, the number of 
parameters increases rapidly according to the input dimension. 
Hence, the size of the concatenating window is limited. A 
recurrent neural network (RNN) can be considered as a DNN 
with indefinitely many layers, which introduce the memory from 
previous time steps. The potential weakness for RNNs is that 
RNNs lack hierarchical processing of the input at the current time 
step. To further provide the hierarchical information through 
multiple time scales, deep recurrent neural networks (DRNNs) 
are explored. 

B.   Time Frequency Masking 

Given the input features, 𝑥𝑡 from the mixture, we obtain the 
output predictions �̂�1𝑡

 and �̂�2𝑡
 through the network. The soft 

time-frequency mask 𝑚𝑡 is defined as follows: 

𝑚𝑡(𝑓) =
|�̂�1𝑡

 (𝑓)|

|�̂�1𝑡
 (𝑓)|  +  |�̂�2𝑡

 (𝑓)|
   ,                              (4)  

where f ∈ {1, ... , F} represents different frequencies.  

Once a time-frequency mask 𝑚𝑡 is computed, it is applied to 
the magnitude spectra 𝑧𝑡 of the mixture signals to obtain the 
estimated separation spectra�̂�1𝑡

  and �̂�2𝑡
 , which correspond to 

sources 1 and 2, as follows:  

�̂�1𝑡
 (𝑓) =  𝑚𝑡(𝑓) 𝑧𝑡(𝑓)                                                  (5) 

�̂�2𝑡
 (𝑓) =  (1 − 𝑚𝑡(𝑓)) 𝑧𝑡(𝑓)  

where f ∈ {1, . . . , F} represents different frequencies.  

The time-frequency masking function can be viewed as a 
layer in the neural network as well. Instead of training the 
network and applying the time-frequency masking to the results 
separately, we can jointly train the deep learning models with the 
time-frequency masking functions. We add an extra layer to the 
original output of the neural network as follows: 

�̅�1𝑡
=

|�̂�1𝑡
|

|�̂�1𝑡
|  + |�̂�2𝑡

|
  °    𝑧𝑡                                         (6) 



  

�̅�2𝑡
=

|�̂�2𝑡
|

|�̂�1𝑡
|  + |�̂�2𝑡

|
  °    𝑧𝑡  

where the operator ° is the element-wise multiplication 
(Hadamard product). In this way, we can integrate the constraints 
to the network and optimize the network with the masking 
function jointly. Note that although this extra layer is a 
deterministic layer, the network weights are optimized for the 
error metric between and among �̅�1𝑡

 , �̅�2𝑡
 and 𝑦1𝑡

 , 𝑦2𝑡
 , using 

back-propagation. To further smooth the predictions, we can 
apply masking functions to �̅�1𝑡

 and �̅�2𝑡
 , as in Eqs. (4) and (5), to 

get the estimated separation spectra �̅�1𝑡
 and �̅�2𝑡

 . The time domain 

signals are reconstructed based on the inverse short time Fourier 
transform (ISTFT) of the estimated magnitude spectra along with 
the original mixture phase spectra 

 

Figure 2.  Proposed framework 

C.  Architecture 

At time t, the training input, 𝑥𝑡, of the network is the 
concatenation of features from a mixture within a window. 
Magnitude spectra is used as features. The output targets, 𝑦1𝑡

 and 

𝑦2𝑡
, and output predictions, �̅�1𝑡

 and �̅�2𝑡
  , of the network are the 

magnitude spectra of different sources. Since the problem is to 
separate one of the sources from a mixture, instead of learning 
one of the sources as the target, the framework from [14] is 
adapted to model all different sources simultaneously. Figure 1 
shows an example of the architecture. Moreover, it is useful to 
further smooth the source separation results with a time-
frequency masking technique, for example, binary time-

frequency masking or soft time frequency masking [14]. The 
time-frequency masking function enforces the constraint that the 
sum of the prediction results is equal to the original mixture. For 
manageability all hidden layers had 256 hidden units. 

 

V. EXPERIMENTS AND RESULTS 

In the separation process, the spectrogram of each mixture is 
computed using, a window size of 1024, short time Fourier 
transform (STFT) with a hop size of 256 (at Fs=8,000). Using 
log-mel filterbank features provided worse performance. Many 
experiments were performed by changing the number of RNN 
layers as 1, 2 and 3, using loss as MSE, the mean squared error, 
and KL (the generalized Kullback-Leibler divergence criterion) 
and using a discriminative training objective and changing the 
input context size. Unless stated, training was done on 1000 
epochs with batch size of 1. Optimizer adam was found to 
converge satisfactorily within 1000 epochs, hence it was used in 
all expriments. 

A.  Dataset 

The proposed architecture is evaluated using the MIR-1K 
dataset [12]. A thousand song clips are encoded with a sample 
rate of 16 KHz, with durations from 4 to 13 seconds. The clips 
were extracted from 110 Chinese karaoke songs performed by 
both male and female amateurs. There are manual annotations of 
the pitch contours, lyrics, indices and types for unvoiced frames, 
and the indices of the vocal and non-vocal frames. Only the 
singing voice and background music are used in this set-up. 

Data is generated in 4 second chunks and training data is 
augmented by combining vocals of a song with music from 
another. The network is trained using clips from 50 singers, 
validated on 20 singers and tested on remaining 40 singers’ clips.  

B.  Results 

The suppression of noise is reflected in SIR. The artifacts 
introduced by the denoising process are reflected in SAR. The 
overall performance is reflected in SDR.  

First, the effect of input size is compared. Using only the 

current frame, one previous frame and two previous frames is 

compared with one RNN layer and MSE loss after time frequency 

masking. Table 1 shows that using one previous frame worked 

best and therefore in later experiments, input size of two is used. 

TABLE I.  RESULTS FOR INPUT SIZES 

Model 

(Input Size) 
GNSDR GSIR  GSAR 

1 6.23 9.34 9.83 

2 6.55 9.45 9.89 

3 6.46 9.45 9.91 

 

 

 



  

 

Next, performance with and without data augmentation is 
compared. For augmentation, every 4 second clip was combined 
with 10 other music tracks, increasing the training set ten times. 

As Table II shows, augmentation provided significant 
improvement over original data and was used in all later 
experiments 

TABLE II.  RESULTS FOR DATA AUGMENTATION  

Input GNSDR GSIR  GSAR 

Not Augmented 6.55 9.45 9.89 

Augmented 7.13 10.03 10.64 

 

Next, performance for different targets for loss was 
compared. As seen in Table III, when both the sources are used 
for target, loss can be computed after or before the soft time 
frequency mask was applied. Using only one source as a target 
gave considerably worse performance while computing loss after 
the mask was still the best performing model. 

TABLE III.  RESULTS FOR TARGETS FOR LOSS COMPUTATION 

Training loss 

computed on 

(output) 

GNSDR GSIR  GSAR 

Vocal 5.63 8.12 9.01 

Music 5.32 8.32 8.88 

Both, before mak 6.89 9.71 9.02 

Both, after mask 7.13 10.03 10.64 

 

Next, performance for different architectures of the model 
and objective functions was explored, with number of RNN 
layers ranging from 1 to 3 and simply DNN. For all the models, 
use of KL divergence and MSE was compared. 

TABLE IV.  RESULTS FOR DIFFERENT MODEL ARCHITECTURE AND LOSSES 

Model Loss GNSDR GSIR  GSAR 

DNN MSE 6.18 8.92 9.11 

1 RNN 

layers  
MSE 7.13 10.03 10.64 

2 RNN 

layers 
MSE 7.18 10.71 10.92 

3 RNN 

layers 
MSE 7.22 10.53 11.04 

DNN KL 6.53 8.50 9.48 

1 RNN 

layers  
KL 7.13 10.01 10.78 

2 RNN 

layers 
KL 7.20 10.28 11.19 

3 RNN 

layers 
KL 7.25 10.46 11.15 

 

 

As Table IV clearly shows KL divergence criterion always 
performed marginally better than MSE. Increasing the number of 
RNN layers to 3 gave better SDR values 

Finally, comparing this result with the baseline NMF results 
[8], there is an improvement of 2.4 dB GNSDR. 

 

VI. CONCLUSION 

 Different deep learning models for monaural source 

separation were studied and compared. Recurrent neural 

networks and joint time frequency mask optimization was used 

to separate voice and music from mixed audio and an 

improvement over the baseline was achieved.   
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